Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Vaccine ; 41(20): 3233-3246, 2023 05 11.
Article in English | MEDLINE | ID: covidwho-2295171

ABSTRACT

The ongoing SARS-CoV-2 pandemic is controlled but not halted by public health measures and mass vaccination strategies which have exclusively relied on intramuscular vaccines. Intranasal vaccines can prime or recruit to the respiratory epithelium mucosal immune cells capable of preventing infection. Here we report a comprehensive series of studies on this concept using various mouse models, including HLA class II-humanized transgenic strains. We found that a single intranasal (i.n.) dose of serotype-5 adenoviral vectors expressing either the receptor binding domain (Ad5-RBD) or the complete ectodomain (Ad5-S) of the SARS-CoV-2 spike protein was effective in inducing i) serum and bronchoalveolar lavage (BAL) anti-spike IgA and IgG, ii) robust SARS-CoV-2-neutralizing activity in the serum and BAL, iii) rigorous spike-directed T helper 1 cell/cytotoxic T cell immunity, and iv) protection of mice from a challenge with the SARS-CoV-2 beta variant. Intramuscular (i.m.) Ad5-RBD or Ad5-S administration did not induce serum or BAL IgA, and resulted in lower neutralizing titers in the serum. Moreover, prior immunity induced by an intramuscular mRNA vaccine could be potently enhanced and modulated towards a mucosal IgA response by an i.n. Ad5-S booster. Notably, Ad5 DNA was found in the liver or spleen after i.m. but not i.n. administration, indicating a lack of systemic spread of the vaccine vector, which has been associated with a risk of thrombotic thrombocytopenia. Unlike in otherwise genetically identical HLA-DQ6 mice, in HLA-DQ8 mice Ad5-RBD vaccine was inferior to Ad5-S, suggesting that the RBD fragment does not contain a sufficient collection of helper-T cell epitopes to constitute an optimal vaccine antigen. Our data add to previous promising preclinical results on intranasal SARS-CoV-2 vaccination and support the potential of this approach to elicit mucosal immunity for preventing transmission of SARS-CoV-2.


Subject(s)
COVID-19 , Viral Vaccines , Humans , Animals , Mice , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Vaccines , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , SARS-CoV-2 , Administration, Intranasal , Disease Models, Animal , Immunoglobulin A
2.
Lancet Diabetes Endocrinol ; 11(4): 251-260, 2023 04.
Article in English | MEDLINE | ID: covidwho-2266781

ABSTRACT

BACKGROUND: Some epidemiological studies have suggested an increase in incidence of type 1 diabetes during the COVID-19 pandemic, however the mechanism(s) behind such an increase have yet to be identified. In this study we aimed to evaluate the possible role of the SARS-CoV-2 virus in the reported increase in the rate of type 1 diabetes. METHODS: In this observational cohort study using data from the Finnish Pediatric Diabetes Register (FPDR), we assessed the incidence of type 1 diabetes (number of children with newly diagnosed type 1 diabetes per 100 000 person-years during the pandemic and the reference period) during the first 18 months of the COVID-19 pandemic in children in Finland younger than 15 years old compared with a reference period which included three corresponding pre-pandemic periods also obtained from the FPDR. Children with confirmed monogenic diabetes were excluded. We also compared the phenotype and HLA genotype of the disease between these two cohorts, and analysed the proportion of newly diagnosed people with type 1 diabetes testing positive for SARS-CoV-2 antibodies. FINDINGS: 785 children and adolescents in Finland were diagnosed with type 1 diabetes from March 1, 2020, to Aug 31, 2021. In the reference period, which comprised three similar 18-month terms (from March 1, 2014, to Aug 31, 2015; March 1, 2016, to Aug 31, 2017; and March 1, 2018, to Aug 31, 2019) 2096 children and adolescents were diagnosed. The incidence of type 1 diabetes was 61·0 per 100 000 person-years (95% CI 56·8-65·4) among children younger than 15 years old during the pandemic, which was significantly higher than during the reference period (52·3 per 100 000 person-years; 50·1-54·6). The incidence rate ratio adjusted for age and sex for the COVID-19 pandemic was 1·16 (1·06-1·25; p=0·0006) when compared with the reference period. The children diagnosed during the COVID-19 pandemic had more often diabetic ketoacidosis (p<0·001), had a higher HbA1c (p<0·001), and tested more frequently positive for glutamic acid debarboxylase antibodies at diagnosis (p<0·001) than those diagnosed before the pandemic. There were no significant differences in the distribution of HLA genotypes between the two periods. Only five of those diagnosed during the pandemic (0·9%) of 583 tested positive for infection-induced SARS-CoV-2 antibodies. INTERPRETATION: Children and adolescents diagnosed with type 1 diabetes during the pandemic had a more severe disease at diagnosis. The observed increase in type 1 diabetes incidence during the first 18 months could be a consequence of lockdown and physical distancing rather than a direct effect of SARS-CoV-2 infection. FUNDING: Helsinki University Hospital Research Funds, EU Horizon 2020 (Versatile emerging infectious disease observatory project), Academy of Finland, Sigrid Jusélius Foundation, Jane & Aatos Erkko Foundation, and Medicinska understödsföreningen Liv och Hälsa. TRANSLATIONS: For the Finnish and Swedish translations of the abstract see Supplementary Materials section.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 1 , Child , Humans , SARS-CoV-2 , Diabetes Mellitus, Type 1/epidemiology , COVID-19/epidemiology , Finland/epidemiology , Pandemics , Communicable Disease Control
3.
Nat Commun ; 14(1): 1637, 2023 03 24.
Article in English | MEDLINE | ID: covidwho-2270479

ABSTRACT

The emergence of increasingly immunoevasive SARS-CoV-2 variants emphasizes the need for prophylactic strategies to complement vaccination in fighting the COVID-19 pandemic. Intranasal administration of neutralizing antibodies has shown encouraging protective potential but there remains a need for SARS-CoV-2 blocking agents that are less vulnerable to mutational viral variation and more economical to produce in large scale. Here we describe TriSb92, a highly manufacturable and stable trimeric antibody-mimetic sherpabody targeted against a conserved region of the viral spike glycoprotein. TriSb92 potently neutralizes SARS-CoV-2, including the latest Omicron variants like BF.7, XBB, and BQ.1.1. In female Balb/c mice intranasal administration of just 5 or 50 micrograms of TriSb92 as early as 8 h before but also 4 h after SARS-CoV-2 challenge can protect from infection. Cryo-EM and biochemical studies reveal triggering of a conformational shift in the spike trimer as the inhibitory mechanism of TriSb92. The potency and robust biochemical properties of TriSb92 together with its resistance against viral sequence evolution suggest that TriSb92 could be useful as a nasal spray for protecting susceptible individuals from SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Female , Animals , Mice , Humans , Administration, Intranasal , COVID-19/prevention & control , Pandemics , Antibodies, Neutralizing , Mice, Inbred BALB C , Antibodies, Viral , Spike Glycoprotein, Coronavirus/genetics
4.
J Infect Dis ; 2023 Mar 27.
Article in English | MEDLINE | ID: covidwho-2274533

ABSTRACT

Convalescent plasma (CP) treatment of COVID-19 has shown significant therapeutic effect when administered early (e.g. Argentinian trial showing reduced hospitalisation) but has in general been ineffective (e.g. REMAP-CAP trial without improvement during hospitalisation). To investigate whether the differences in CP used could explain the different outcomes, we compared neutralising antibodies, anti-spike IgG and avidity of CP used in the REMAP-CAP and Argentinian trials and in convalescent vaccinees. We found no difference between the trial plasmas emphasising initial patient serostatus as treatment efficacy predictor. By contrast, vaccinee convalescent plasma showed significantly higher titres and avidity, being preferable for future CP-treatment.

5.
Diagnostics (Basel) ; 12(7)2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-1938729

ABSTRACT

Makkah in Saudi Arabia hosts the largest annual religious event in the world. Despite the many strict rules enacted, including Hajj cancellation, city lockdowns, and social distancing, the region has the second highest number of new COVID-19 cases in Saudi Arabia. Public health interventions that identify, isolate, and manage new cases could slow the infection rate. While RT-PCR is the current gold standard in SARS-CoV-2 identification, it yields false positive and negative results, which mandates the use of complementary serological tests. Here, we report the utility of serological assays during the acute phase of individuals with moderate and severe clinical manifestations of SARS-CoV-2 (COVID19). Fifty participants with positive RT-PCR results for SARS-CoV-2 were enrolled in this study. Following RT-PCR diagnosis, serum samples from the same participants were analyzed using in-house ELISA (IgM, IgA, and IgG) and microneutralization test (MNT) for the presence of antibodies. Of the 50 individuals analyzed, 43 (86%) showed a neutralizing antibody titer of ≥20. Univariate analysis with neutralizing antibodies as a dependent variable and the degree of disease severity and underlying medical conditions as fixed factors revealed that patients with no previous history of non-communicable diseases and moderate clinical manifestation had the strongest neutralizing antibody response "Mean: 561.11". Participants with severe symptoms and other underlying disorders, including deceased individuals, demonstrated the lowest neutralizing antibody response. Anti-spike protein antibody responses, as measured by ELISA, showed a statistically significant correlation with neutralizing antibodies. This reinforces the speculation that serological assays complement molecular testing for diagnostics; however, patients' previous medical history (anamnesis) should be considered in interpreting serological results.

6.
Nat Commun ; 12(1): 3991, 2021 06 28.
Article in English | MEDLINE | ID: covidwho-1286457

ABSTRACT

As SARS-CoV-2 has been circulating for over a year, dozens of vaccine candidates are under development or in clinical use. The BNT162b2 mRNA COVID-19 vaccine induces spike protein-specific neutralizing antibodies associated with protective immunity. The emergence of the B.1.1.7 and B.1.351 variants has raised concerns of reduced vaccine efficacy and increased re-infection rates. Here we show, that after the second dose, the sera of BNT162b2-vaccinated health care workers (n = 180) effectively neutralize the SARS-CoV-2 variant with the D614G substitution and the B.1.1.7 variant, whereas the neutralization of the B.1.351 variant is five-fold reduced. Despite the reduction, 92% of the seronegative vaccinees have a neutralization titre of >20 for the B.1.351 variant indicating some protection. The vaccinees' neutralization titres exceeded those of recovered non-hospitalized COVID-19 patients. Our work provides evidence that the second dose of the BNT162b2 vaccine induces cross-neutralization of at least some of the circulating SARS-CoV-2 variants.


Subject(s)
Broadly Neutralizing Antibodies/blood , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Immunogenicity, Vaccine , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , Antibodies, Viral/immunology , BNT162 Vaccine , Broadly Neutralizing Antibodies/immunology , COVID-19/blood , COVID-19/epidemiology , COVID-19/immunology , COVID-19 Vaccines/administration & dosage , Cross Protection/immunology , Female , Finland/epidemiology , Humans , Immunization, Secondary/methods , Immunization, Secondary/statistics & numerical data , Male , Mass Vaccination/methods , Mass Vaccination/statistics & numerical data , Middle Aged , Neutralization Tests/statistics & numerical data , Reinfection/immunology , Reinfection/prevention & control , Reinfection/virology , SARS-CoV-2/genetics , Young Adult
7.
Arch Dis Child ; 107(2): 180-185, 2022 02.
Article in English | MEDLINE | ID: covidwho-1247330

ABSTRACT

BACKGROUND: Viral infections may trigger type 1 diabetes (T1D), and recent reports suggest an increased incidence of paediatric T1D and/or diabetic ketoacidosis (DKA) during the COVID-19 pandemic. OBJECTIVE: To study whether the number of children admitted to the paediatric intensive care unit (PICU) for DKA due to new-onset T1D increased during the COVID-19 pandemic, and whether SARS-CoV-2 infection plays a role. METHODS: This retrospective cohort study comprises two datasets: (1) children admitted to PICU due to new-onset T1D and (2) children diagnosed with new-onset T1D and registered to the Finnish Pediatric Diabetes Registry in the Helsinki University Hospital from 1 April to 31 October in 2016-2020. We compared the incidence, number and characteristics of children with newly diagnosed T1D between the prepandemic and pandemic periods. RESULTS: The number of children admitted to PICU due to new-onset T1D increased from an average of 6.25 admissions in 2016-2019 to 20 admissions in 2020 (incidence rate ratio [IRR] 3.24 [95% CI 1.80 to 5.83]; p=0.0001). On average, 57.75 children were registered to the FPDR in 2016-2019, as compared with 84 in 2020 (IRR 1.45; 95% CI 1.13 to 1.86; p=0.004). 33 of the children diagnosed in 2020 were analysed for SARS-CoV-2 antibodies, and all were negative. CONCLUSIONS: More children with T1D had severe DKA at diagnosis during the pandemic. This was not a consequence of SARS-CoV-2 infection. Instead, it probably stems from delays in diagnosis following changes in parental behaviour and healthcare accessibility.


Subject(s)
COVID-19/epidemiology , Diabetes Mellitus, Type 1/epidemiology , Diabetic Ketoacidosis/epidemiology , Adolescent , COVID-19/complications , COVID-19/immunology , COVID-19/virology , Child , Child, Preschool , Communicable Disease Control/standards , Delayed Diagnosis/statistics & numerical data , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/therapy , Diabetic Ketoacidosis/diagnosis , Diabetic Ketoacidosis/immunology , Diabetic Ketoacidosis/therapy , Female , Finland/epidemiology , Health Services Accessibility/standards , Health Services Accessibility/statistics & numerical data , Humans , Incidence , Intensive Care Units, Pediatric/statistics & numerical data , Male , Pandemics/prevention & control , Pandemics/statistics & numerical data , Patient Admission/statistics & numerical data , Registries/statistics & numerical data , Retrospective Studies , SARS-CoV-2/immunology , Severity of Illness Index
8.
Viruses ; 13(6)2021 05 26.
Article in English | MEDLINE | ID: covidwho-1244152

ABSTRACT

Increasing evidence suggests that some newly emerged SARS-CoV-2 variants of concern (VoCs) resist neutralization by antibodies elicited by the early-pandemic wild-type virus. We applied neutralization tests to paired recoveree sera (n = 38) using clinical isolates representing the first wave (D614G), VoC1, and VoC2 lineages (B.1.1.7 and B 1.351). Neutralizing antibodies inhibited contemporary and VoC1 lineages, whereas inhibition of VoC2 was reduced 8-fold, with 50% of sera failing to show neutralization. These results provide evidence for the increased potential of VoC2 to reinfect previously SARS-CoV-infected individuals. The kinetics of NAbs in different patients showed similar decline against all variants, with generally low initial anti-B.1.351 responses becoming undetectable, but with anti-B.1.1.7 NAbs remaining detectable (>20) for months after acute infection.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Viral/immunology , COVID-19/diagnosis , COVID-19/virology , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins/immunology , Humans , Immunoglobulin G/immunology , Kinetics , Neutralization Tests , Phosphoproteins/immunology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
9.
mBio ; 12(3)2021 05 18.
Article in English | MEDLINE | ID: covidwho-1234283

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic has seen an unprecedented increase in the demand for rapid and reliable diagnostic tools, leaving many laboratories scrambling for resources. We present a fast and simple assay principle for antigen detection and demonstrate its functionality by detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens in nasopharyngeal swabs. The method is based on the detection of SARS-CoV-2 nucleoprotein (NP) and S protein (SP) via time-resolved Förster resonance energy transfer (TR-FRET) with donor- and acceptor-labeled polyclonal anti-NP and -SP antibodies. Using recombinant proteins and cell culture-grown SARS-CoV-2, the limits of detection were established as 25 pg of NP or 20 infectious units (IU) and 875 pg of SP or 625 IU. Testing reverse transcription-PCR (RT-PCR)-positive (n = 48, with cycle threshold [CT ] values from 11 to 30) or -negative (n = 96) nasopharyngeal swabs demonstrated that the assay yielded positive results for all samples with CT values of <25 and for a single RT-PCR-negative sample. Virus isolation from the RT-PCR-positive nasopharyngeal swabs showed a strong association between the presence of infectious virus and a positive antigen test result. The NP-based assay showed 97.4% (37/38) sensitivity and 100% (10/10) specificity in comparison with virus isolation and 77.1% (37/48) sensitivity and 99.0% (95/96) specificity in comparison with SARS-CoV-2 RT-PCR. The assay is performed in a buffer that neutralizes SARS-CoV-2 infectivity, and the assay is relatively simple to set up as an "in-house" test. Here, SARS-CoV-2 served as the model pathogen, but the assay principle is applicable to other viral infections, and the test format could easily be adapted to high-throughput testing.IMPORTANCE PCR is currently the gold standard for the diagnosis of many acute infections. While PCR and its variants are highly sensitive and specific, the time from sampling to results is measured in hours at best. Antigen tests directly detect parts of the infectious agent, which may enable faster diagnosis but often at lower sensitivity and specificity. Here, we describe a technique for rapid antigen detection and demonstrate the test format's potential using SARS-CoV-2 as the model pathogen. The 10-min test, performed in a buffer that readily inactivates SARS-CoV-2, from nasopharyngeal samples identified 97.4% (37/38) of the samples from which we could isolate the virus. This suggests that the test performs well in identifying patients potentially shedding the virus. Although SARS-CoV-2 served as the model pathogen to demonstrate proof of concept, the test principle itself would be applicable to a wide variety of infectious and perhaps also noninfectious diseases.


Subject(s)
Antigens, Viral/analysis , COVID-19 Serological Testing/methods , Fluorescence Resonance Energy Transfer , SARS-CoV-2/isolation & purification , Antigens, Viral/immunology , COVID-19/diagnosis , COVID-19/virology , Coronavirus Nucleocapsid Proteins/analysis , Coronavirus Nucleocapsid Proteins/immunology , Humans , Limit of Detection , Nasopharynx/virology , Phosphoproteins/analysis , Phosphoproteins/immunology , Proof of Concept Study , Recombinant Proteins/immunology , SARS-CoV-2/immunology , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/analysis , Spike Glycoprotein, Coronavirus/immunology , Time Factors
10.
Viruses ; 13(2)2021 Jan 20.
Article in English | MEDLINE | ID: covidwho-1067779

ABSTRACT

Accurate and rapid diagnostic tools are needed for management of the ongoing coronavirus disease 2019 (COVID-19) pandemic. Antibody tests enable detection of individuals past the initial phase of infection and help examine vaccine responses. The major targets of human antibody response in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are the spike glycoprotein (SP) and nucleocapsid protein (NP). We have developed a rapid homogenous approach for antibody detection termed LFRET (protein L-based time-resolved Förster resonance energy transfer immunoassay). In LFRET, fluorophore-labeled protein L and antigen are brought to close proximity by antigen-specific patient immunoglobulins of any isotype, resulting in TR-FRET signal. We set up LFRET assays for antibodies against SP and NP and evaluated their diagnostic performance using a panel of 77 serum/plasma samples from 44 individuals with COVID-19 and 52 negative controls. Moreover, using a previously described SP and a novel NP construct, we set up enzyme linked immunosorbent assays (ELISAs) for antibodies against SARS-CoV-2 SP and NP. We then compared the LFRET assays with these ELISAs and with a SARS-CoV-2 microneutralization test (MNT). We found the LFRET assays to parallel ELISAs in sensitivity (90-95% vs. 90-100%) and specificity (100% vs. 94-100%). In identifying individuals with or without a detectable neutralizing antibody response, LFRET outperformed ELISA in specificity (91-96% vs. 82-87%), while demonstrating an equal sensitivity (98%). In conclusion, this study demonstrates the applicability of LFRET, a 10-min "mix and read" assay, to detection of SARS-CoV-2 antibodies.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , Immunoassay/methods , SARS-CoV-2/isolation & purification , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/blood , Coronavirus Nucleocapsid Proteins/immunology , Humans , Phosphoproteins/immunology , SARS-CoV-2/immunology , Sensitivity and Specificity , Spike Glycoprotein, Coronavirus/immunology
11.
Science ; 370(6518): 856-860, 2020 11 13.
Article in English | MEDLINE | ID: covidwho-883299

ABSTRACT

The causative agent of coronavirus disease 2019 (COVID-19) is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). For many viruses, tissue tropism is determined by the availability of virus receptors and entry cofactors on the surface of host cells. In this study, we found that neuropilin-1 (NRP1), known to bind furin-cleaved substrates, significantly potentiates SARS-CoV-2 infectivity, an effect blocked by a monoclonal blocking antibody against NRP1. A SARS-CoV-2 mutant with an altered furin cleavage site did not depend on NRP1 for infectivity. Pathological analysis of olfactory epithelium obtained from human COVID-19 autopsies revealed that SARS-CoV-2 infected NRP1-positive cells facing the nasal cavity. Our data provide insight into SARS-CoV-2 cell infectivity and define a potential target for antiviral intervention.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/virology , Neuropilin-1/metabolism , Pneumonia, Viral/virology , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization , Angiotensin-Converting Enzyme 2 , Animals , Antibodies, Monoclonal/immunology , Betacoronavirus/genetics , COVID-19 , Caco-2 Cells , Female , HEK293 Cells , Host Microbial Interactions , Humans , Lung/metabolism , Male , Metal Nanoparticles , Mice , Mice, Inbred C57BL , Mutation , Neuropilin-1/chemistry , Neuropilin-1/genetics , Neuropilin-1/immunology , Neuropilin-2/metabolism , Olfactory Mucosa/metabolism , Olfactory Mucosa/virology , Pandemics , Peptide Fragments/metabolism , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Protein Binding , Protein Domains , Respiratory Mucosa/metabolism , SARS-CoV-2 , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/chemistry
12.
J Virol ; 94(18)2020 08 31.
Article in English | MEDLINE | ID: covidwho-640272

ABSTRACT

In recent years, nidoviruses have emerged as important respiratory pathogens of reptiles, affecting captive python populations. In pythons, nidovirus (recently reclassified as serpentovirus) infection induces an inflammation of the upper respiratory and alimentary tract which can develop into a severe, often fatal proliferative pneumonia. We observed pyogranulomatous and fibrinonecrotic lesions in organ systems other than the respiratory tract during full postmortem examinations on 30 serpentovirus reverse transcription-PCR (RT-PCR)-positive pythons of varying species originating from Switzerland and Spain. The observations prompted us to study whether this not yet reported wider distribution of lesions is associated with previously unknown serpentoviruses or changes in the serpentovirus genome. RT-PCR and inoculation of Morelia viridis cell cultures served to recruit the cases and obtain virus isolates. Immunohistochemistry and immunofluorescence staining against serpentovirus nucleoprotein demonstrated that the virus infects not only a broad spectrum of epithelia (respiratory and alimentary epithelium, hepatocytes, renal tubules, pancreatic ducts, etc.), but also intravascular monocytes, intralesional macrophages, and endothelial cells. With next-generation sequencing we obtained a full-length genome for a novel serpentovirus species circulating in Switzerland. Analysis of viral genomes recovered from pythons showing serpentovirus infection-associated respiratory or systemic disease did not reveal sequence association to phenotypes; however, functional studies with different strains are needed to confirm this observation. The results indicate that serpentoviruses have a broad cell and tissue tropism, further suggesting that the course of infection could vary and involve lesions in a broad spectrum of tissues and organ systems as a consequence of monocyte-mediated viral systemic spread.IMPORTANCE During the last years, python nidoviruses (now reclassified as serpentoviruses) have become a primary cause of fatal disease in pythons. Serpentoviruses represent a threat to captive snake collections, as they spread rapidly and can be associated with high morbidity and mortality. Our study indicates that, different from previous evidence, the viruses do not only affect the respiratory tract, but can spread in the entire body with blood monocytes, have a broad spectrum of target cells, and can induce a variety of lesions. Nidovirales is an order of animal and human viruses that comprises important zoonotic pathogens such as Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), and SARS-CoV-2. Serpentoviruses belong to the same order as the above-mentioned human viruses and show similar characteristics (rapid spread, respiratory and gastrointestinal tropism, etc.). The present study confirms the relevance of natural animal diseases to better understand the complexity of viruses of the order Nidovirales.


Subject(s)
Nidovirales Infections/virology , Nidovirales/physiology , Respiratory Tract Infections/virology , Animal Diseases/diagnosis , Animal Diseases/virology , Animals , Biopsy , Boidae/virology , Disease Susceptibility , Humans , Immunohistochemistry , Nidovirales/isolation & purification , Nidovirales Infections/diagnosis , Organ Specificity , Phenotype , Phylogeny , Recombination, Genetic , Respiratory Tract Infections/diagnosis , Viral Tropism , Virus Shedding
13.
Cell Rep Med ; 1(5): 100078, 2020 08 25.
Article in English | MEDLINE | ID: covidwho-694586

ABSTRACT

Severe disease of SARS-CoV-2 is characterized by vigorous inflammatory responses in the lung, often with a sudden onset after 5-7 days of stable disease. Efforts to modulate this hyperinflammation and the associated acute respiratory distress syndrome rely on the unraveling of the immune cell interactions and cytokines that drive such responses. Given that every patient is captured at different stages of infection, longitudinal monitoring of the immune response is critical and systems-level analyses are required to capture cellular interactions. Here, we report on a systems-level blood immunomonitoring study of 37 adult patients diagnosed with COVID-19 and followed with up to 14 blood samples from acute to recovery phases of the disease. We describe an IFNγ-eosinophil axis activated before lung hyperinflammation and changes in cell-cell co-regulation during different stages of the disease. We also map an immune trajectory during recovery that is shared among patients with severe COVID-19.


Subject(s)
COVID-19/immunology , Adaptive Immunity , Adult , Basophils/metabolism , COVID-19/blood , Cell Communication , Convalescence , Eosinophils/metabolism , Female , Humans , Inflammation , Interferon-gamma/blood , Interleukin-6/blood , Longitudinal Studies , Male , SARS-CoV-2 , Severity of Illness Index
14.
Nat Med ; 26(7): 1033-1036, 2020 07.
Article in English | MEDLINE | ID: covidwho-244499

ABSTRACT

Here, we describe a serological enzyme-linked immunosorbent assay for the screening and identification of human SARS-CoV-2 seroconverters. This assay does not require the handling of infectious virus, can be adjusted to detect different antibody types in serum and plasma and is amenable to scaling. Serological assays are of critical importance to help define previous exposure to SARS-CoV-2 in populations, identify highly reactive human donors for convalescent plasma therapy and investigate correlates of protection.


Subject(s)
Betacoronavirus/immunology , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Coronavirus Infections/immunology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/immunology , Seroconversion , Adult , Betacoronavirus/pathogenicity , COVID-19 , COVID-19 Testing , Case-Control Studies , Coronavirus Infections/blood , Coronavirus Infections/therapy , Coronavirus Infections/virology , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Humans , Immunization, Passive , Longitudinal Studies , Middle Aged , Neutralization Tests , Pandemics , Pneumonia, Viral/therapy , Pneumonia, Viral/virology , SARS-CoV-2 , Young Adult , COVID-19 Serotherapy
15.
Euro Surveill ; 25(11)2020 03.
Article in English | MEDLINE | ID: covidwho-18570

ABSTRACT

The first case of coronavirus disease (COVID-19) in Finland was confirmed on 29 January 2020. No secondary cases were detected. We describe the clinical picture and laboratory findings 3-23 days since the first symptoms. The SARS-CoV-2/Finland/1/2020 virus strain was isolated, the genome showing a single nucleotide substitution to the reference strain from Wuhan. Neutralising antibody response appeared within 9 days along with specific IgM and IgG response, targeting particularly nucleocapsid and spike proteins.


Subject(s)
Contact Tracing , Coronavirus Infections , Coronavirus/genetics , Coronavirus/isolation & purification , Pandemics , Pneumonia, Viral , Severe Acute Respiratory Syndrome/immunology , Severe acute respiratory syndrome-related coronavirus/immunology , Travel , Adult , Antibodies, Viral/blood , Asymptomatic Infections , Betacoronavirus , COVID-19 , COVID-19 Testing , China , Clinical Laboratory Techniques , Coronavirus/immunology , Coronavirus Infections/diagnosis , Coronavirus Infections/transmission , Coronavirus Infections/virology , Female , Finland , Fluorescent Antibody Technique , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Neutralization Tests , Pneumonia, Viral/diagnosis , Pneumonia, Viral/transmission , Pneumonia, Viral/virology , Severe acute respiratory syndrome-related coronavirus/pathogenicity , SARS-CoV-2 , Severe Acute Respiratory Syndrome/etiology , Severe Acute Respiratory Syndrome/virology , Viral Envelope Proteins
SELECTION OF CITATIONS
SEARCH DETAIL